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Foreword

Vector control is the primary intervention for most of vector-
borne diseases, including malaria, dengue, and Zika, due to
lack of effective drug and vaccine. For a long history, we had
heavily relied on chemical insecticides to suppress the vector
populations in hopes of reducing them below epidemiological
thresholds that are required for disease transmission. Now, we
learn that this has to be changed after seeing the rapid
development of strong resistance to insecticides in vectors and
the significant negative impact of chemical sprays on envi-
ronment and nontarget species. We also realize the urgency to
make such change because some old vector-borne diseases like dengue become more
serious than before, new diseases like Zika emerge as global threats, and progress made
in control of other diseases like malaria has now stalled and even reversed. There is a
consensus that we need to better understand pathogen-vector interactions that deter-
mine the ability of vectors to transmit diseases and utilize those knowledge for
developing novel tools and strategies with the potential to lead to sustainable disease
control. One of the most promising areas is microbial control of vector-borne
diseasesas addressed by this book.

Like vertebrate hosts, insect vectors have close contacts with microbes in nature.
Some microbes form intimate relationships with vectors and play essential roles for
vector survival, reproduction, or development; some just stay together with vectors as
guests; and others infect vectors as pathogens, reduce insect fitness, and even kill
them. All of the abovementioned three types of microbe-vector relationship can be
utilized for vector control reduce insect fitness as introduced in different chapters of
this book. The most straightforward approach to develop microbial control of vector-
borne disease is to kill directly the vectors or their offspring to reduce the quantity of
pests. Alternatively, efforts can be developed to reduce the quality of an insect to
serve as a vector for human pathogens. It is worthy to note that those human path-
ogens transmitted by vectors are not harmful to vectors in most situations. After
encountering vectors and becoming their guests, they complete replication, devel-
opment, or both, inside the body of the insect, to prepare for their next journey in
humans. In order for an insect to be able to transmit a specific human pathogen, its
physiological environment and behavior have to match perfectly to the pathogen’s
requirements. This provides an opportunity for the other microbes to perturb or finely
adjust to this environment, either naturally or artificially, such that insects are no long
hospitable for pathogens or incapable for moving pathogens to human. To a certain
degree, such modification of the insect’s physiological microenvironment to break
the linkage between vectors and pathogens is similar to the traditional environmental
management for vector-borne disease control by preventing contact between vectors
and human. Thus, microbial control of vector-borne disease can be accomplished
by either reducing vector density or the ability of vectors in transmitting human
pathogens.




X Foreword

While many novel microbe-based approaches have been demonstrated in the
laboratory, exciting progresses have recently been made to provide proof of concept
through field trial. One good example is the maternally transmitted endosymbiotic
bacteria Wolbachia, which are estimated to be present in 65% of millions of insect
species in nature. As selfish microbes, Wolbachia manipulate insect reproduction for
their own benefit such that they can invade and spread into populations. Different
insects may carry different Wolbachia strains, indicating that indicating that millions
of Wolbachia strains may be present in nature. With the ability established to man-
ually introduce a Wolbachia strain into an insect host to build a novel symbiosis in
laboratory, we can make a naturally uninfected mosquito to carry Wolbachia, displace
the existing Wolbachia with a novel strain, or add novel Wolbachia to create multiple
strain combination. Importantly, some of those novel Wolbachia strains in mosquito
can act like a vaccine to protect the mosquito from human pathogens. Recent field
trials show that releasing Wolbachia-infected Aedes aegypti can result in invasion of
Wolbachia in mosquito population and reduce its potential in transmitting dengue and
Zika. This approach is attractive due to its low cost and sustainability in disease
control because once a local mosquito population is modified to become pathogen
resistant, disease transmission in this area will be reduced or blocked even given the
migration of infected people from another endemic region into this control region.
In a different trial, millions of Wolbachia-infected Aedes albopictus male mosquitoes
are produced in a mosquito factory and released in the field every week to induce
sterile matings with the wild type of mosquitoes, resulting in suppressing and even
eliminating local populations. Due to these important progresses, the World Health
Organization encourages endemic countries to continue developing Wolbachia as
a practical tool for vector-borne disease control, resulting in ongoing field trials in
~20 countries or regions and the first success in registration of Wolbachia as a
microbial pesticide in United States Environmental Protection Agency in 2017.

Due to its environment-friendly sustainability, and compatibility with the tradi-
tional approaches like vaccine and drug, microbial control of vector-borne disease is
expected to play more important role in disease control and prevention in the near
future. New microbes will be discovered in laboratories and gone through research
and development and field trials, while specific microbes will be used to target each
individual species of dominant disease vectors without negative impacts on nontarget
species. Advances in biotechnology, artificial intelligence, automation, and real-time
monitoring through web-based mapping service will facilitate the deployment of
these approaches in field setting to accelerate the efforts for disease eradication.

Dr. Zhiyong Xi, PhD

Associate Professor and Director

Microbiology and Molecular Genetics

SYSU-MSU Joint Centre of Vector Control for Tropical Diseases
College of Natural Science

Michigan State University

Michigan, USA



Preface

Vector-borne diseases such as malaria, dengue, chikungunya, schistosomiasis, human
African trypanosomiasis, leishmaniasis, Chagas disease, yellow fever, onchocercia-
sis, Zika virus, and several different types of encephalitides including Japanese enceph-
alitis are a major cause of human morbidity and mortality globally. More than 1 billion
cases and over 1 million deaths are reported annually. These diseases, mostly rampant
in tropical and subtropical regions of the world, account for over 17% of all infectious
diseases. Distribution of these diseases is determined by a complex interrelationship
among pathogen, vector, and human being, anchored by environmental and social
factors, as well as global travel and trade, unplanned urbanization, and environmental
challenges such as climate change and global warming. Some diseases, such as den-
gue, chikungunya, West Nile virus, and Zika virus, are emerging in countries where
they were previously unknown. The recent spread of Zika virus, a mosquito-borne
viral disease, across Americas, Europe, and parts of Asia, is a towering example of
how rapidly some vector-borne diseases might disseminate over larger areas in a
relatively short time period. Vector-borne diseases are spread mainly by the bite of
insects and other arthropod vectors, such as mosquitoes, ticks, mites, triatomine bugs,
tsetse flies, sandflies, and black flies, imposing heavy health and economic burdens,
in addition to unmeasurable human misery and hardship, as many people who sur-
vive infection are left permanently debilitated, disfigured, maimed, or blind. Vectors
of these diseases thrive under conditions where housing is poor, water is unsafe, and
environments are contaminated with filth. Measures that control the vectors, the agents
of diseases, provide an excellent but underutilized opportunity to help these people
catch up.

For the past nearly 100 years, the vectors of these diseases were chemically con-
trolled only to show resistance against the various chemicals that proved inhibitive in
the long run and also because of their toxicity to both human and nontarget organ-
isms as well as the environment. Subsequently, biological and environmental control
methods were used in controlling these vectors but proved to no avail in emergencies
of disease epidemics. Alternatively, following stringent research during the past four
decades, microbial agents and tools have recently shown great promise, and the best
example is Bacillus thuringiensis var. israelensis to control a wide range of vector
and pest mosquitoes. Microbial control, defined simply as the use of microorgan-
isms or their by-products by humans to suppress insect pest populations, implies that
microorganisms like bacteria, actinobacteria, cyanobacteria, fungi, algae, and pro-
tozoa can bring about reduction in vector population by a variety of pathways without
causing serious human health and environment concerns. Some of these are ready
for field use, whereas others have already proven effective in reducing vector pop-
ulations. In a similar way, many microorganisms interfere with the development of
the disease causing pathogens in the vector and results in its depletion or reduction,
bringing about a control of the disease before it breaks out.

This book presents a detailed overview of microbial biomolecules in meeting the
challenges to control and prevent vector borne-diseases; autodissemination of current

Xxi



xii Preface

and future potential in the application of entomopathogens against mosquito-borne
diseases; and bioprospecting of bacterial, actinobacterial, cyanobacterial, fungal metab-
olites, gut microbiota, and Wolbachia for mosquito control. Finally, genetically altered
microbes and viruses are also used in the control of mosquito-borne diseases. Moreover,
this book also provides a comprehensive account on microbial control of leishmaniasis,
aquatic snail-borne diseases, blackfly-targeted onchocerciasis, and flea-borne Rick-
ettsial diseases. This book will be eventually beneficial to future research program-
mers, planners, administrators, scientists, academicians, and researchers as well as the
governments of various nations who are interested in fortifying and expanding their
knowledge about microbial control of vectors in the fields of microbiology, biotech-
nology, entomology, biomedical science, public health, and environmental science.

The book is comprised of 21 chapters from multiple contributors around the
world including the United States, Mexico, China, Turkey, Thailand, India, and the
Kingdom of Saudi Arabia. We are grateful to all the contributors and leading experts
for the submission of their stimulating and inclusive chapters in the preparation of this
unique volume on microbial control of vector-borne diseases. The book content is
divided into five sections, namely, microbial control of mosquitoes and mosquito-
borne diseases, leishmanias, schistosomes, blackflies, and fleas.

We offer special thanks and appreciation to Renu Upadhyay, Shikha Garg, and
Jennifer Blaise, editorial team members at CRC Press, for their encouragement and
help in producing the book in a timely manner in its present form. We express our
heartfelt gratitude to our respective universities for their concern, efforts, and support
in publishing this volume.

Professor Brij Kishore Tyagi
Dr. Dharumadurai Dhanasekaran
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’I Microbial Biomolecules
Challenges to Control
and Prevent Vector-
Borne Diseases

Madangchanok Imchen, Jamseel Moopantakath,
Eswara Rao, and Ranjith Kumavath
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ABSTRACT

Vector-borne diseases (VBDs) are caused majorly by arthropods which effects
millions of people worldwide. Malaria alone is a dreadful disease in devel-
oping countries. However, the emergence of new VBDs and their resistance to
standard drugs have posed a serious threat to the world. Hence, a new source of
drugs to treat the dreadful VBDs is the need of the hour. It is surprising that one
of the most ancestral innate immunities in every class of life is known as host
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defense peptides or antimicrobial peptides (AMPs) and have not been much in
focus majorly due to lack of revenue generation. AMPs have shown to have
promising anti-infective activates on a wide range of microbes including viral
and cancer cells. In this chapter, we have compiled some of the research on
microbial biomolecules targeting the vector and the pathogens along with the
possible mode of action.

The later part of the chapter focuses on prevention of VBDs through math-
ematical models, regulatory measures, and community-level participation.
Vectors are highly dependent on the environmental condition for its maturation
and life cycles. Therefore, in order to make the best usage of various environ-
mental data, models pertaining to the VBD outbreaks or the abundance of vectors
can be built using environmental data and NASA’s satellite-based Moderate
Resolution Imaging Spectroradiometer in order to predict the most likely pos-
sibility of prevention using powerful algorithms. We have also discussed the
importance and the problems faced in imparting knowledge through a public
awareness program regarding various VBDs and the importance of community-
level participation along with personal prophylaxis measures.

1.1 INTRODUCTION

1.1.1 Brier INTRODUCTION TO VECTOR-BORNE Diseases (VBDs)

Vector-borne diseases (VBDs) are those that are transmitted from an infected vector
source to humans, plants, or animals. Biologically, vectors can be defined as organ-
isms that carry disease-causing agents. Vectors are considered to be invertebrates,
most commonly arthropods, since a majority of VBDs are caused by arthropods.
However, vertebrates such as foxes, rats, certain bats, and a species of aquatic snail
can also act as vectors. The disease-causing pathogen thrives within the vector, which
is then transmitted to another biological body mostly through bites and stings or
infestation of tissues. Since most vectors are arthropods ectothermic (cold blooded),
they are highly influenced by the landscape and climatic conditions for their prolif-
eration. Trade and commerce between countries has also led to the transmission of
vectors to places previously unknown (World Health Organization [WHO] 2016).

1.1.2 Errects oF VBDs oN THE PuBLIC

Vector-borne disease causes more than 1 million deaths annually, accounting for
more than 17% of the overall infectious diseases. Emerging VBDs such as dengue
have the potential of contracting to over 2.5 billion people. Malaria alone kills over
400,000 individuals mostly under the age of 5 (WHO 2016). Rural schools can be
a breeding ground for malarial vector such as female Aedes aegypti and Culex
quinquefasciatus (Olano et al. 2015). Besides the dreadful effects of VBDs in
humans, the economic growth of a country could be hindered by vector-borne plant
and animal diseases through reduced agricultural productivity and socioeconomic
status. Tropical and subtropical areas experience the highest rate of VBD infections
(Institute of Medicine 2008).
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In order to control the emergence of VBDs, usage of insecticides to keep the vector
under control can be followed. Malaria, dengue, and filariasis (WHO 2006) can be
prevented by wise usage of insecticides where breeding of mosquitoes is most likely
to occur. However, insects, as compared to microbes, can also gain resistance to
insecticides (WHO 1998). This resistance could be due to changes in metabolic
processes of the vector (Hemingway et al. 1998) through increased production
of enzymes such as carboxylesterases, glutathione-S-transferases, and cytochrome
P450-dependent monooxygenases, which are involved in sequestering, metabolism,
and detoxification (Rivero et al. 2010). However, it should be noted that increased
resistance of insects against insecticides does not always lead to increased trans-
mission of VBDs. Insecticide-resistant Culex quinquefasciatus mosquitoes have been
shown to exhibit reduced ability to transmit the filarial parasite Wuchereria bancrofti
as compared to the wild type (Vontas et al. 2005).

1.2 MICROBIAL BIOMOLECULES AGAINST VECTOR-BORNE
DISEASES

1.2.1 INTRODUCTION TO ANTIMICROBIAL PEPTIDES

The resistance of pathogens to various drugs is a serious threat. Pathogens gain
resistance through different mechanisms such as plasmid encoding resistance genes
or by overexpression of efflux pumps, which extrude drugs from the cells (Nikaido
2009). Antimicrobial peptides (AMPs), also known as host defense peptides (DHPs),
are innate immune responses part of every class of life. AMPs are peptides that
generally range from 15 to 50 amino acids and exhibit a broad range of action against
pathogenic microbes. Some AMPs also act as anticancer peptides. Generally AMPs
exhibit their activity due to the major difference between eukaryotic and prokaryotic
cells. There are over 2400 AMPs, however, they do not show any correlation between
amino acid residuals and their biological activity (Zhang et al. 2014). More than
90% of AMPs are positively charged. On the basis of amino acid residual composi-
tion, they are broadly classified into linear, cysteine rich, and specific amino acid rich
AMPs. Classification based on secondary structure includes helical, sheet, mixed, and
random coiled AMPs (Zhang et al. 2014). AMPs belonging to the magainin class
cause osmotic lysis in various protozoa, leading to swelling of the cell until it bursts
(Wu et al. 2015). This class of peptides is effective against several protozoa including
Trypanosoma cruzi. The skin of amphibians is constantly exposed to environments
that harbor an immense amount of microbes. Hence, they produce AMPs as a pro-
tective measure. One such AMP derived from Rana temporaria, a European frog,
is temporin A and B peptides, which are composed of 13 amino acids. These pep-
tides have anti-leishmania activity, leaving the healthy human erythrocytes intact
(Mangoni 2006). AMPs also show inhibitory activity against various viruses through
arange of mechanisms such as neutralization of virus by integrating with the host cell
membrane or directly onto the viral envelope (Narayana and Chen 2015). They also
inhibit a major viral protein, VP16, which is required by the virus for integration into
the host nucleus.
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1.2.2 MALARIA

Malaria is caused by the protozoan Plasmodia. It starts with the female Anopheles
mosquito infected with the infective form of plasmodia called sporozoites. When
such an infected mosquito bites a mammal, the sporozoites are transmitted through its
saliva into the mammal. The sporozoites then migrate to the liver cells called
hepatocytes. In the liver cells, the sporozoites mature to the next phase of the life
cycle and are called merozoites, followed by the rupture of hepatocytes, and finally
release into the bloodstream (Vale et al. 2014). The asexual lifecycle of the plasmodia
starts within the red blood cell (RBC). The merozoites develop into the ring stage
followed by trophozoites that are metabolically active. The final stage is the devel-
opment into schizonts that are responsible for infection of other healthy RBCs by
realizing merozoites. The ring-form stage can also be developed into female and male
gametocytes that can infect a healthy Anopheles mosquito during a blood meal. In
the infected Anopheles, the gametocytes develop into ookinetes, oocysts, and finally
sporozoites, which migrate to the salivary gland of the mosquito ready to infect a
susceptible mammal in the next blood meal (Vale et al. 2014).

AMPs with broad-spectrum activity from various sources, including Anopheles
mosquitoes, have been shown to exhibit antimalarial activates (Bell 2011). AMPs
act against negatively charged prokaryotic cells. However, the antimalarial activity
via inhibition of infected eukaryotic (mammalian) RBCs can sound contradicting.
The selective antimalarial activity of AMPs could be linked to the changes brought
about to the membrane of infected RBCs. Infection of RBCs by Plasmodium
falciparum increases the contents of phosphatidylinositol and phosphatidic acid in the
membrane and decreases sphingomyelin (Hsiao et al. 1991). Thus cationic AMPs
have the potential and promising scope in the treatment of malaria as a new class of
antimalarial drugs (Vale et al. 2014). Antimicrobial peptides can form channels
(Krishna et al. 1990) through the formation of transbilayer bundles (Snook et al.
1998) or through dissipation of mitochondrial membrane potential or plasma mem-
brane (Nagaraj et al. 2001). Fungal peptides efrapeptins, zervamicins, and antiamoebin
inhibited the growth of P. falciparum in micromolar concentration. Efrapeptins inhibits
mitochondrial FoF; ATPase (Nagaraj et al. 2001).

Surfactants are compounds that weaken the surface tension of a given liquid. An
example of a commonly used household surfactant would be soap and detergent.
Surfactants have been found to be suitable candidature as an antimalarial. Rham-
nolipids are produced by Pseudomonas aeruginosa that exhibit a low surface tension
between 31.4 and 38.7 mN/m (millinewtons per meter) (Silva et al. 2015). It is
biodegradable and shows low toxicity. The larvae of Aedes aegypti maintain balance
on the water surface through air pockets in the trachea and hydrophobic region of the
siphon (Christophers 1960). This hydrophobic balance is disturbed by rhamnolipids
leading to difficulty of the larvae to stay on the water surface and expend more energy
for active swimming to the surface (Silva et al. 2015).

Recent works by Li (2016) targeting fibrinogen-related protein 1 (FREPI) showed
promising results as a antimicrobial. FREP1, which is produced in the midgut of
mosquitoes after a blood meal, can attach to gametocytes and ookinetes. This can
enable the parasite to penetrate the peritrophic matrix and epithelium. Thus, targeting
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the FREP1 using a nontoxin bioactive natural product P-orlandin from Aspergillus
niger showed 92% inhibition of interaction between FREP1 and Plasmodium
falciparum-infected cells. This disruption of interaction reduces the infection of
mosquitoes by Plasmodium.

1.2.3 CHAGAS DiSEaSE (AMERICAN TRYPANOSOMIASIS)

Chagas disease is named in honor of Brazilian physician Carlos Chagas. It is spread
through the bite of triatomine bugs (kissing bugs) infected with protozoan Trypan-
osoma cruzi, and through blood or organ transfusion from an infected source. The
disease is divided into three stages: The acute stage, which is characterized by malaise
and fever lasting from 4 to 8 weeks. It is followed by the indeterminate phase, which
can last up to 2 decades. Active replication of the protozoan takes places during this
stage; however, the clinical symptoms are minimum. This can lead to the chronic
stage of Chagas disease that leads to irreversible damage to the autonomous nervous
and peripheral nervous system (Maguire 1987). This stage of Chagas disease is
incurable. The hallmark of Chagas disease is progressive heart disease (Bestetti and
Muccillo 1997; Hurwitz et al. 2011). Trypanosoma cruzi strains display a high rate of
polymorphism (Martinez-Diaz et al. 2001) and thus it is difficult for a simple accurate
detection method. Fungal entophytes thrive inside a plant host. Such entophytic
fungus has been screened in large amounts by Higginbotham et al. (2013). Entophytic
fungus (104 out of 2698 fungal entophytes, 3.9%) isolated from various plants in
national parks throughout Panama showed high activity against Trypanosoma cruzi.
The same research group isolated fungal cultures from sloth hair (a mammal generally
found in the tropical forests of South and Central America). Interestingly, organic
crude extracts from 8 out of 62 (12.9%) cultures were highly active against Try-
panosoma cruzi (Higginbotham et al. 2014). Five anti-trypanosomal metabolites,
actinoallolides A-E, were also isolated from Actinoallomurus fulvus MK10-036
(Inahashi et al. 2015).

Anti-Trypanosoma cruzi peptides have been tested in the past such as Dermaseptin
01 from the skin of the Phyllomedusa hypochondrialis frog (Brand et al. 2006) as
well as fungal peptides such as efrapeptins (Cataldi de Flombaum and Stoppani 1981)
and antiamoebin (Kumar et al. 1991). Efrapeptins and antiamoebin act by inhibition
of ATPase of the protozoan. Extracts from Aspergillus fumigatus exhibited lysis of
trypomastigote as high as 95% while leaving the healthy red blood cells intact
(Furtado et al. 2005). Since the production of microbial bioactive molecules and
compounds pose the limitation of limited quantity, artificial neural networks could
contribute for optimization of optimum production of trypanocidal metabolites
(Furtado et al. 2005).

1.2.4 LEISHMANIASIS

Leishmaniasis is transmitted by the bite of female phlebotomine sand flies through
the transmission of intramacrophage protozoan of the genus Leishmania. Annually
more than 200,000 new cases of visceral leishmaniasis are reported (WHO 2016).
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However, most of these cases are concentrated in poor countries, such as Bangladesh,
Nepal, India, and Brazil (Murray 2004). Hence, it is also known as the diseases of the
poor that is most prevalent in Southeast Asia and Latin America (WHO 2014). There
are three main types of leishmaniases: visceral leishmaniasis (VL), cutaneous leish-
maniasis (CL), and muco-cutaneous leishmaniasis (ML) (Herwaldt 1999). The most
severe among all the types of leishmaniases is the visceral leishmaniasis (VL), which
is caused by Leishmania donovani (Davis et al. 2004). The pathogenesis of leish-
maniasis is initiated by the breakdown of cell surface with the help of protease
enzyme present on the surface of Leishmania species thus leading inside the host cell.
Metalloprotease is present on the Leishmania promastigotes cell surface as a major
surface protease (MSP), which helps in attachment of the protozoan to the sand fly
gut (Sundar 2001). MSP also binds to the CR3 receptor on the macrophage, which
aids in internalization of the promastigote. Treatments for leishmaniasis include
Amphotericin-B and its lipid formulations, stibogluconate (pentostam) and meglu-
mine antimoniate (glucantime). However, they are known to have severe side effects
to the patients in addition to the high treatment costs, which is unaffordable to most in
poor countries. Sodium antimony gluconate (SAG), which was an effective drug with
antileishmanial effects, have been stopped in most countries due to the resistance
developed by the pathogen (Sundar 2001).

Kojic acid (KA) is a water-soluble fungal metabolite produced by the Aspergillus
species. Kojic acid has been shown to exhibit antiamastigote activity (Rodrigues et al.
2014). Macrophage infected with L. amazonensis is deprived of reactive oxygen
species (ROS) and NO production (Olivier et al. 2005; Mukbel et al. 2007). However,
treatment with Kojic acid reverses these inhibitory effects, which leads to production
of O; leading to killing of the pathogen (Rodrigues et al. 2014).

1.2.5 DENGUE AND JAPANESE ENCEPHALITIS

Flavivirus is the causative agent of Japanese encephalitis and dengue. Flavivirus is an
sSRNA virus carrying a genome of 10.6 to 11 kb that encodes for capsid, premembrane,
and envelope protein, and other functions such as replication of RNA genome (Green
and Rothman 2006). More than 70 variants of flavivirus strains cause various diseases.
Some of the most dreadful viruses of the Flavivirus genus are dengue virus (DENV),
yellow fever virus (YFV), West Nile virus (WNV), Japanese encephalitis virus JEV),
and tick-borne encephalitis virus (TBEV) (Rohde et al. 2008; Bollati et al. 2010).
Morbidity and mortality rates of Japanese encephalitis and dengue are highest in
southern and eastern Asia. Although both VBDs are caused by flavivirus, the vectors
differ for dengue and Japanese encephalitis. The fresh water inhabitant Aedes Aegypti
vectors the virus that causes dengue, whereas Japanese encephalitis is caused by Culex
(Culex tritaeniorhynchus, Culex vishnui, and Culex pseudovishnui) often found in
polluted water bodies. Symptoms are similar for both organisms, including severe
headache, fever and vomiting, encephalitis (brain inflammation), meningitis, weak-
ness, and movement disorders, which can develop over a number of days and may
lead to coma and paralysis (El-Kafrawy et al. 2016; Kumar and Sharma 2016).
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Various drugs to treat dengue have failed due to its adverse side effects to the
patients. Drugs against dengue and Japanese encephalitis from microbial sources
are in the infant stage. The various microbial products that exhibit dengue anti-
viral activity include bafilomycins, mycophenolic acid, and other fungal metabolites
that work through a range of mechanisms such as inhibition of NS2B, ATPase,
inosine 5’-monophosphate dehydrogenase (IMPDH), or through inhibition of endo-
some acidification to prevent the entry of the virus into the endosome. A number of
Streptomyces sp. shows promising inhibition action against Japanese encephalitis
causative virus (Ratnakomala et al. 2011). Its mode of action targets the ATPase
enzyme, which inhibits the RNA helicase activity.

Chitins are an essential compound for mosquitoes and act as a protective layer in
their body coverings and are required during the different growth stages of mosqui-
toes, especially during the transformation from larvae to pupae. Chitinase enzymes
from Streptomyces cacaoi subsp. cacaoi-M20 targeting the chitin required for the
larvae have shown to have insecticide activity against Aedes mosquitoes (Janaki et al.
2016). Metabolites of Streptomyces PO-02, PO-08, and PO-11 showed marked lar-
vicidal efficacy via inhibitory activity on lipase. At concentration 500 pg/ml, inhi-
bition of enzyme ranged between 12% and 58.50% (Prashith et al. 2012). Ethyl
acetate extracts from various microbes such as Py. sanguineus, Pe. virgulata,
Streptomyces sp. VITIS4 (Naine and Devi 2014), Bacillus, and Pseudomonas sp.
(Nabar and Lokegaonkar 2015) have shown to exhibit Aedes aegypti larvicidal
activity ranging from 98% to 100% at 550 ppm. Fungal mosquito pathogens such as
Lagenidium, Coelomomyces, and Culicinomyces are also a promising tool to fight
against the vector (Scholte et al. 2004). Besides the natural microbial products,
synthesis of nanoparticles through the aid of microbes could pave a new dimension
in the fight against VBDs. Nanoparticles are generally more effective than bulk
compounds. Cerium oxide nanoparticle synthesis using Aspergillus niger showed
activity against Aedes aegypti 0.250 mg/L (Gopinath et al. 2015).

1.2.6  WEsT NiLe FEVER

West Nile fever is caused by ssRNA West Nile virus (WNV) belonging to the
Flavivirus genus (Petersen and Marfin 2002). Culex mosquitoes mainly transmit
it. The West Nile virus life cycle is maintained in a bird—mosquito-bird pattern,
with birds being the main reservoir and arthropod vectors. WNV is mainly observed
in high temperate regions. Chimeric protein from WNYV is mainly responsible for
humoral and cell-mediated immunity that can be used against the WNV itself. Fusion
of Salmonella typhimurium fljB flagellin with EIIl domain of the WNV envelope
protein stimulates high immune response and activation of Toll-like receptor (TLR)
(Huleatt et al. 2007). Such an approach could be used for the development of vaccine
against WNV. Ethyl acetate extracts from Salinispora sp. SA6E, Salinispora sp.
SA22E, and Rhodococcus sp. SA12E showed inhibition of West Nile protease NS3
inhibition 84%, 79%, and 93%, respectively (Abdelmohsen et al. 2014) (Table 1.1).
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TABLE 1.1

Various Microbial Products and Their Source along with Their Mode of Action

Source

S. gougerotii GT

M. variabilis C-03

Streptomyces sp.
YIM56209

Penicillium
brevicompactum

Beauveria bassiana

Streptomyces sp.,
Actinoplanes
philippinensis,
Kribbella flavida

Streptomyces sp.

Emericellopsis
poonensis

Tolypocladium
niveum

Emericellopsis
salmosynnemata

Pseudomonas
aeruginosa

Compound
48S,10R-dihydroxy-
11-methyl-dodec-
2-en-1,4-olide
Cyclo-(4-trans-6-
dihydroxy-
proline-L-leucine)

Bafilomycins

Mycophenolic acid

Fungal biomass

Secondary
metabolites

Antiamoebin [
Efrapeptin C-G
Zervamicin 1A

Zervamicin 1B

Rhamnolipids

Against

Dengue

Japanese
encephalitis

P. falciparum

Larvae of
A. aegypti

Action
Inhibits the
expression of
NS2B protease

Inhibits endosome
acidification

Inhibits inosine
5’-monophosphate
dehydrogenase
(IMPDH), which
affect DNA
synthesis in virus

Activates toll and
JAK-STAT
pathway-controlled
effector genes and
anti-dengue activity
in Aedes aegypti

ATPase inhibitor of
RNA Helicase
(40%—-45%)

95%-100% inhibition
of Virus NS3 at
0.05 mg and
0.1 mg/20 ml

Efrapeptins inhibit
mitochondrial
FoF, ATPase

Distribution of
hydrophobic
balance

Reference
Lin et al. 2016

Bowman et al.
1988; Yu
etal. 2011

Bartman et al.
1981;

Kang et al.
2014

Dong et al.
2012

Ratnakomala
et al. 2011

Hatsu et al.
2002

Nagaraj et al.
2001

Silva et al.
2015

(Continued)
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TABLE 1.1 (CONTINUED)
Various Microbial Products and Their Source along with Their Mode of Action

Source

P-orlandin

Compound

Aspergillus niger

Against
P. falciparum

Action Reference

Inhibits the interaction Li 2016
between fibrinogen-
related protein 1
(FREP1) and
P. falciparum
infected cells

Fungal extracts Fungal entophytes T. cruzi Higginbotham
et al. 2013
Fungal cultures Higginbotham
from sloth hair et al. 2014
Actinoallolides Actinoallomurus Trypanosoma Inahashi et al.
A-E Sfulvus MK10-036 cruzi 2015
Crude extract Aspergillus Trypanosoma Lysis of Furtado et al.
Jumigatua cruzi trypomastigote 2005
Ethyl acetate Salinispora sp. West Nile virus Inhibits West Nile Abdelmohsen
extracts SAGE, protease NS3 et al. 2014
Salinispora sp.
SA22E,
Rhodococcus sp.
SAI2E
Kojic acid (KA) Aspergillus species L. amazonensis  Reverses inhibitory Rodrigues
effects that lead et al. 2014

to production of
O3 and to killing
of the pathogen

1.3 VECTOR-BORNE DISEASE CONTROL AND PREVENTION

1.3.1 DEeveLOPMENT OF MODEL FOR THE CONTROL AND PREVENTION OF VBDs

The survival and maturation of vectors require suitable environments. Thus, the
spread of VBDs is directly related to environmental factors and the socioeconomic
status of the society. For instance, malarial transmission is dependent on air tem-
perature where the development and maturation cycle of the parasite decreases with
an increase in air temperature (Alto and Juliano 2001). Similarly, correlations were
seen between cutaneous leishmaniasis and air temperature (Chaves and Pascual
2006). The level of rainfall and the abundance of malarial vector are also well
correlated (Y¢€ et al. 2009). Such information based on rainfall and weather pre-
diction can be used as an early warning sign (Chabot-Couture et al. 2014). Other
environmental factors include humidity, water bodies, and latitude and longitude.
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